Solubility of CO₂ in Sulfonate Ionic Liquids at High Pressure

Suojiang Zhang, *,† Yuhuan Chen,† Rex X.-F. Ren,
‡ Yanqiang Zhang,† Jianmin Zhang,† and Xiangping Zhang†

Group for Green Chemistry and Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100080, People's Republic of China, and Department of Chemistry, Wesleyan University, Middletown, Connecticut 06459-0180

In this work, the solubility of CO_2 in sulfonate ionic liquids (ILs), such as trihexyl (tetradecyl) phosphonium dodecylbenzenesulfonates ($[P_{6,6,6,14}][C_{12}H_{25}PhSO_3]$) and trihexyl (tetradecyl) phosphonium mesylate ($[P_{6,6,6,14}][MeSO_3]$), was determined at temperatures ranging from (305 to 325) K and pressures ranging from (4 to 9) MPa. It was found that the difference of the solubility of CO_2 in two kinds of sulfonate ILs is not dramatic on the basis of molality. The solubility of CO_2 in $[P_{6,6,6,14}][MeSO_3]$ is higher than that in $[P_{6,6,6,14}][C_{12}H_{25}PhSO_3]$. The solubility data were correlated by means of the extended Henry's law, and the thermodynamic functions, such as the standard enthalpy, standard Gibbs free energy, and standard entropy, were obtained. The Henry's law constant for CO_2 in all the investigated ionic liquids increases with increasing temperature.

Introduction

The utilization of green solvents is an effective way to prevent volatile organic compound (VOC) pollution. Recently, ionic liquids (ILs) have attracted much attention due to their unique properties;¹ for example, they have an extremely low vapor pressure, are nonflammable, have excellent solvent power for organic and inorganic compounds, and are easily modified structurally to elicit desired physical properties.^{2–4} They have been commonly recognized as a versatile alternative to conventional organic solvents. On the other hand, supercritical carbon dioxide $(scCO_2)$ is well-known to be a green solvent, too. Many unique properties have been found by combining the advantages of these two classes of green solvents. Although CO_2 is extremely soluble in ILs, the reverse is not the case. Usually no appreciable ILs solubilized in the CO_2 phase. This constitutes a green system for the extraction of a wide variety of solutes from IL phases without any contamination, which has shown great potential applications in many practical processes and product engineering.⁵

Studies on the binary mixtures of scCO₂ and ILs are an interesting and important topic. Much research work has been focused on imidazolium ILs.⁶⁻¹⁶ Blanchard et al.⁶ studied the extraction of naphthalene from ILs by scCO₂ and found that not only was the organic substance extracted efficiently by scCO₂ without any IL contamination, but also the IL was recovered in its original purity after extraction and depressurization. Najdanovic-Visak et al.⁷ investigated the equilibrium behavior of ILs, water, and ethanol mixtures by adding CO₂. Blanchard et al.³ and Anthony et al.⁸ studied the solubility of CO₂, CH₄, water, and other gases in imidazolium-based ILs and the phase behavior of ILs, water, and CO₂. These studies, although very limited, provide fundamental knowledge for developing reactions and separation technologies by utilizing the unique properties of both ILs and scCO₂.¹²⁻¹⁶ Recently, a new kind of ILs, sulfonate ILs, has been synthesized.^{17,18} In this paper, the solubility data of CO_2 in sulfonate ILs, such as trihexyl (tetradecyl) phosphonium dodecylbenzenesulfonates ($[P_{6,6,6,14}][C_{12}H_{25}PhSO_3]$) and trihexyl (tetradecyl) phosphonium mesylate ($[P_{6,6,6,14}][MeSO_3]$), at temperatures ranging from (305 to 325) K and pressures ranging from (4 to 9) MPa were presented. The effects of temperature and pressure on the solubility of CO_2 were discussed. The measured data were correlated by the extended Henry's law. The thermodynamic properties of IL $-CO_2$ systems, such as the standard enthalpy, standard Gibbs free energy, and standard entropy, were obtained.

Experimental Section

Synthesis of ILs. The sulfonate ILs ($[P_{6,6,6,14}][C_{12}H_{25}$ -PhSO₃] and $[P_{6,6,6,14}][MeSO_3]$) were synthesized according to the literature.¹⁷ The decomposition temperatures are 417.8 °C and 383.3 °C for $[P_{6,6,6,14}][C_{12}H_{25}PhSO_3]$ and $[P_{6,6,6,14}][MeSO_3]$, respectively, which were determined by the thermogravimetric analysis (TGA) method. The synthesized ILs were dried under vacuum at 120 °C for 24 h before use. The water content of ILs after drying was measured by Karl Fischer titration and was <0.1 wt %. The residual chloride in the ILs was 0.002 mol·L⁻¹, which was determined by the method reported by Seddon et al.¹⁹ CO₂ was purchased from Beijing Analytical Instrument Factory with a purity of 99.995%.

Solubility Measurements. The apparatus used for CO_2 solubility measurements consists of a high-pressure stainless steel cell with a volume scale window, a gas storage tank, a pressure gauge, a magnetic stirrer, and a temperature-constant water bath; a schematic diagram of the experimental apparatus is shown in Figure 1. The measurement of solubility was carried out by the gravimetric method. An accurate amount of ILs was loaded in the high-

[‡] Wesleyan University.

Such sulfonate ILs do not contain halides, are more stable with thermal treatment and water, and can be synthesized easily from inexpensive raw materials. Therefore, they are more attractive compared to imidazolium ILs. To our knowledge, there is no reported work on the solubility of CO_2 in sulfonate ILs.

[†] Chinese Academy of Sciences.

Figure 1. Schematic diagram of the experimental apparatus: a, water bath; b, high-pressure cell; c, volume scale; d, magnetic stirring bar; e, magnetic stirrer; f, pressure gauge; g, gas storage tank; h, needle valve.

pressure cell and degassed for 12 h in the temperatureconstant water bath. Then, a fixed mass amount of CO_2 was added to the storage tank and a small Teflon-coated magnetic bar was used for stirring. The equilibrium condition was judged when the pressure was unchanged for ~90 min. After equilibrium was reached, the amount of CO_2 in the gas storage tank was measured with an analytical balance with an accuracy of ± 0.001 g and the amount of CO_2 in the gaseous phase could be calculated. Then, the CO_2 dissolved in the ILs could be obtained by the difference. Temperature was measured by a thermometer with an accuracy of better than ± 0.01 K and pressure by a pressure transducer (Foxboro/ICT model 93) with an accuracy of ± 0.025 MPa. The estimated uncertainty of the solubility is $\pm 0.8\%$.

Modeling. Due to the negligible vapor pressure of ILs,^{3,4} the gaseous phase is assumed to be pure CO_2 . Applying the vapor-liquid equilibrium condition to CO_2 results in the extended Henry's law equation:

$$K_{\mathrm{H,CO}}(T, P)a_{\mathrm{CO}}(T, m_{\mathrm{CO}}) = f_{\mathrm{CO}}(T, P)$$
(1)

 $K_{\mathrm{H,CO}_2}(T, P)$ is the Henry's law constant of CO_2 in ILs based on the molality scale. It is expressed as

$$K_{\mathrm{H,CO}_{2}}(T,P) = K_{\mathrm{H,CO}_{2}}(T) \exp\left(\frac{V_{\mathrm{CO}_{2}}^{\infty}P}{RT}\right) \tag{2}$$

where $K_{\text{H,CO}_2}(T)$ is the Henry's law constant at the vapor pressure of the solvent $(P_{\text{IL}}^{\text{sat}})$ and $V_{\text{CO}_2}^{\infty}$ is the partial molar volume of the gas at infinite dilution.

 $a_{\rm CO_2}(T, m_{\rm CO_2})$ is the activity of CO₂ in the liquid:

$$a_{\rm CO_2} = \frac{m_{\rm CO_2}}{m^{\circ}} \gamma_{\rm CO_2}^*$$
(3)

where $m^{\circ} = 1 \text{ mol·kg}^{-1}$ and $\gamma^*_{CO_2}$ is the activity coefficient of CO_2 .

The fugacity of CO_2 at the equilibrium temperature and pressure $(f_{CO_2}(T, P))$ is calculated from the following equation

$$f_{\rm CO_o}(T,P) = P\phi_{\rm CO_o}(T,P) \tag{4}$$

where ϕ is the fugacity coefficient, which can be obtained by the use of SRK EOS,²⁰

$$P = \frac{RT}{V-b} - \frac{a}{V(V+b)}$$
(5)

$$\ln \phi = Z - 1 - \ln \left[Z \left(1 - \frac{b}{V} \right) \right] - \frac{a\alpha}{bRT} \ln \left(1 + \frac{b}{V} \right) \quad (6)$$

where

$$a = a_{\rm c} \alpha(T) \tag{7}$$

$$b = 0.086 \ 64RT_{\rm c}/P_{\rm c} \tag{8}$$

and

$$a_{\rm c} = 0.427 \ 48R^2 T_{\rm c}^2 / P_{\rm c}^2 \tag{9}$$

 $\alpha(T)^{1/2} =$

$$1 + (0.485\ 08 + 1.551\ 71\omega - 0.156\ 13\omega^2)(1 - T_{\rm r}^{1/2}) \ (10)$$

where *P* is the pressure, *R* is the gas constant, *T* is the temperature, *a* and *b* are the EOS constants, *V* is the molar volume, T_c is the critical temperature, P_c is the critical pressure, T_r is the reduced temperature, $\alpha(T)$ expresses the temperature dependence of the parameter *a*, ω is the acentric factor, and *Z* is the compressibility factor.

The Henry's law constant of CO_2 can be calculated from the vapor-liquid equilibrium (VLE) data according to eq 11.

$$K_{\rm H,CO_2}(T) = \lim_{P \to P_{\rm L}^{\rm S} = 0} \left[\frac{f_{\rm CO_2}(T,P)}{m_{\rm CO_2}/m^{\circ}} \right]$$
(11)

The thermodynamic properties of the system are related to the Henry's law constant by eqs 12-15.

$$\Delta_{\rm sol}G = RT \ln(K_{\rm H}(T, P)/P^{\circ}) \tag{12}$$

$$\Delta_{\rm sol} H = R \left(\frac{\partial \ln(K_{\rm H}(T, P)/P^{\circ})}{\partial(1/T)} \right)_P \tag{13}$$

$$\Delta_{\rm sol}S = (\Delta_{\rm sol}H - \Delta_{\rm sol}G)/T \tag{14}$$

$$\Delta_{\rm sol}C_P = \left(\frac{\partial \Delta_{\rm sol}H}{\partial T}\right)_P \tag{15}$$

Results and Discussion

The solubility of CO_2 in $[P_{6,6,6,14}][C_{12}H_{25}PhSO_3]$ and $[P_{6,6,6,14}][MeSO_3]$ was measured at temperatures of (322.15, 317.45, 312.45, and 307.55) K and pressures ranging from (4 to 9) MPa. The solubility data are presented in Table 1. The solubility behavior of CO_2 in ILs with temperature and pressure was shown in Figures 2 and 3. It can be found that the solubility of CO_2 in all the studied ILs increases with increasing pressure and decreases with increasing temperature; the difference of the solubility of CO_2 in different ILs is not dramatic on the basis of molality.

From Figures 2 and 3, it can be seen that the solubility of CO_2 in $[P_{6,6,6,14}]$ [MeSO₃] is higher than that in $[P_{6,6,6,14}]$ - $[C_{12}H_{25}PhSO_3]$. For example, at 7.9 MPa and 312.45 K, the solubility of CO_2 is 4.517 mol·kg⁻¹ in $[P_{6,6,6,14}]$ [MeSO₃] compared to 3.578 mol·kg⁻¹ in $[P_{6,6,6,14}]$ [C₁₂H₂₅PhSO₃].

The Henry's law constants at different temperatures are shown in Table 2. From Table 2, it can be seen that the Henry's law constant of all the studied systems increases

Table 1. Se	olubility	of CC	\mathbf{b}_2 in	Sulfonate	Ionic	Liquids
-------------	-----------	-------	-------------------	-----------	-------	---------

32	2.15 K	31	7.45 K	31	2.45 K	30	7.55 K
Р	$m_{{ m CO}_2}$	Р	$m_{{ m CO}_2}$	Р	$m_{{ m CO}_2}$	Р	$m_{ m CO_2}$
MPa	$\overline{\mathrm{mol}{\cdot}\mathrm{kg}^{-1}}$	MPa	$\overline{\mathrm{mol}\mathbf{\cdot}\mathrm{kg}^{-1}}$	$\overline{\mathrm{MPa}}$	$\overline{\mathrm{mol}\mathbf{\cdot}\mathrm{kg}^{-1}}$	MPa	$\overline{\mathrm{mol}{\cdot}\mathrm{kg}^{-1}}$
			[P _{6.6.6.14}][C ₁	₂ H ₂₅ PhSO ₃]			
8.96	3.92	8.63	4.03	8.28	3.95	7.92	4.25
8.58	3.45	8.28	3.56	7.9	3.58	7.62	3.68
8.13	3.10	7.79	3.23	7.48	3.28	7.14	3.39
7.8	2.88	7.48	3.00	7.16	3.13	6.86	3.19
7.04	2.61	6.74	2.71	6.47	2.80	6.19	2.89
6.09	2.23	5.85	2.30	5.62	2.39	5.38	2.47
5.22	1.91	5.04	1.97	4.84	2.06	4.63	2.17
			$[P_{6.6.6.14}]$	[MeSO ₃]			
8.73	4.15	8.32	4.25	7.91	4.52	7.48	4.87
8.44	3.60	8.03	3.84	7.64	3.98	7.23	4.27
7.64	3.24	7.28	3.41	6.93	3.61	6.57	3.75
6.96	3.00	6.66	3.10	6.35	3.33	6.03	3.39
6.38	2.70	6.09	2.82	5.81	2.96	5.53	3.06
5.72	2.39	5.47	2.48	5.22	2.63	4.97	2.72
5.12	2.17	4.94	2.23	4.74	2.36	4.48	2.48

Figure 2. CO₂ solubility in [P_{6,6,6,14}][C₁₂H₂₅PhSO₃]: ■, 322.15 K; ●, 317.45 K; ▲, 312.45 K; ▼, 307.55 K; −, correlation of experimental work.

Figure 3. CO₂ solubility in $[P_{6,6,6,14}]$ [MeSO₃]: ■, 322.15 K; ●, 317.45 K; ▲, 312.45 K; ▼, 307.55 K; −, correlation of experimental work.

with increasing temperature, which indicates the solubility of CO_2 decreases with increasing temperature. At a given temperature, the magnitude of the Henry's law constants

Figure 4. Effect of temperature on the Henry's law constant for CO_2 in ILs: \blacksquare , $[P_{6,6,6,14}][C_{12}H_{25}PhSO_3]; \bullet$, $[P_{6,6,6,14}][MeSO_3]; -$, correlation of experimental work.

Table 2. Henry's Law Constant of CO_2 in Sulfonate Ionic Liquids

T	$K_{ m H}$	
K	MPa	SD^a
	[P _{6,6,6,14}][C ₁₂ H ₂₅ PhSO ₃]	
322.15	3.11	0.077
317.45	2.90	0.057
312.45	2.62	0.048
307.55	2.38	0.060
	$[P_{6,6,6,14}][MeSO_3]$	
322.15	2.65	0.043
317.45	2.46	0.044
312.45	2.20	0.034
307.55	2.04	0.029

^a Standard deviation.

of CO₂ dissolved in ILs follows the sequence $[P_{6,6,6,14}]$ - $[C_{12}H_{25}PhSO_3] > [P_{6,6,6,14}][MeSO_3].$

The logarithms of the Henry's law constant variation versus the inverse of temperature are shown in Figure 4, from which the standard enthalpy, standard Gibbs free energy, and standard entropy are calculated, and the results are presented in Table 3. The negative enthalpy values show that CO_2 exhibits stronger molecular interactions with ILs than with some organic molecules, for example, -20.4 kJ·mol⁻¹ in $[P_{6,6,6,14}][C_{12}H_{25}PhSO_3]$ and

Table 3. Standard Enthalpy, Gibbs Free Energy, and Entropy of Solution of CO_2 in Sulfonate Ionic Liquids

	$\Delta_{ m sol} H^{ m o}$	$\Delta_{ m sol}G^{\circ}$	$\Delta_{\rm sol}S^{\circ}$
ionic liquid	kJ•mol ^{−1}	$kJ\cdot mol^{-1}$	$J \cdot K^{-1} \cdot mol^{-1}$
$[P_{6,6,6,14}][C_{12}H_{25}PhSO_3]$	-20.4	1.57 1.35	-73.6

 $-12.6 \text{ kJ} \cdot \text{mol}^{-1}$ in [P_{6,6,6,14}][MeSO₃] compared to $-9.667 \text{ kJ} \cdot \text{mol}^{-1}$ in heptane, $-5.556 \text{ kJ} \cdot \text{mol}^{-1}$ in cyclohexane, and $-9.337 \text{ kJ} \cdot \text{mol}^{-1}$ in benzene,²¹ which means that the CO₂ dissolving in ILs is more favorable enthalpically. However, the negative entropy values indicate a higher ordering degree when CO₂ is dissolved in ILs, which means the CO₂ dissolving in ILs is not favorable. As a result, the standard Gibbs free energy shows small positive values.

Conclusion

The solubility of CO₂ in the sulfonate ILs $[P_{6,6,6,14}][C_{12}H_{25}$ -PhSO₃] and $[P_{6,6,6,14}][MeSO_3]$ was determined at temperatures of (322.15, 317.45, 312.45, and 307.55) K and pressures ranging from (4 to 9) MPa. The results show that the difference of the solubility of CO₂ in two kinds of sulfonate ILs is not dramatic on the basis of molality. The solubility of CO₂ in $[P_{6,6,6,14}][MeSO_3]$ is higher than that in $[P_{6,6,6,14}][C_{12}H_{25}PhSO_3]$. The experimental data were correlated by means of the extended Henry's law. It shows that the Henry's law constant of CO₂ in all the studied ILs increases with increasing temperature. The standard enthalpy, standard Gibbs free energy, and standard entropy were obtained. The standard Gibbs free energy shows a small positive value.

Literature Cited

- Huddleston, J. G.; Visser, A. E.; Reichert, W. M.; Willauer, H. D.; Broker, G. A.; Rogers, R. D. Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. *Green Chem.* 2001, *3*, 156– 164.
- (2) Hagiwara, R.; Ito, Y. Room temperature ionic liquids of alkylimidazolium cations and fluoroanions. J. Fluorine Chem. 2000, 105, 221–227.
- (3) Blanchard, L. A.; Gu, Z.; Brennecke, J. F. High-Pressure Phase Behavior of Ionic Liquid/CO₂ Systems. J. Phys. Chem. B 2001, 105, 2437-2444.
- (4) Wu, W.; Zhang, J.; Han, B.; Chen, J.; Liu, Z.; Jiang, T.; He, J.; Li, W. Solubility of room-temperature ionic liquid in supercritical CO₂ with and without organic compounds. *Chem. Commun.* 2003, 1412–1243.
- (5) Gordon, C. M. New developments in catalysis using ionic liquids. *Appl. Catal.*, A 2001, 222, 101–117.
- (6) Blanchard, L. A.; Hancu, D.; Beckman, E. J.; Brennecke, J. F. Ionic Liquid/CO₂ Biphasic Systems: New Media for Green Processing. *Nature* **1999**, 399, 28-29.

- (7) Najdanovic, V.; Serbanovic, A.; Esperanca, J. M. S. S.; Guedes, H. J. R.; Rebelo, L. P. N.; Nunes da Ponte, M. Supercritical Carbon Dioxide-Induced Phase Changes in (Ionic Liquid, Water and Ethanol Mixture) Solutions: Application to Biphasic Catalysis. *ChemPhysChem* **2003**, *4*, 520–522.
- (8) Anthony, J. L.; Maginn, E. J.; Brennecke, J. F. Solubilities and Thermodynamic Properties of Gases in the Ionic Liquid 1-n-Butyl-3-methylimidazolium Hexafluorophosphate. J. Phys. Chem. B 2002, 106, 7315-7320.
- (9) Kamps, A. P. S.; Tuma, D.; Xia, J. Z.; Maurer, G. Solubility of CO₂ in the Ionic Liquid [bmim][PF₆]. J. Chem. Eng. Data 2003, 48, 746-749.
- (10) Shariati, A.; Peters, C. J. High-pressure phase behavior of systems with ionic liquids: II. The binary system carbon dioxide+1-ethyl-3-methylimidazolium hexafluorophosphate. J. Supercrit. Fluids 2004, 29, 43–48.
- (11) Camper, D.; Scovazzo, P.; Koval, C.; Noble, R. Gas Solubilities in Room-Temperature Ionic Liquids. Ind. Eng. Chem. Res. 2004, 43, 3049–3054.
- (12) Cadena, C.; Anthony, J. L.; Shah, J. K.; Morrow, T. I.; Brennecke, J. F.; Maginn. E. J. Why Is CO₂ So Soluble in Imidazolium-Based Ionic Liquids? J. Am. Chem. Soc. **2004**, 126, 5300-5308.
- (13) Anthony, J. L.; Crosthwaite, J. M.; Hert, D. G.; Aki, S. N. V. K.; Maginn, E. J.; Brennecke, J. F. Phase Equilibria of Gases and Liquids with 1-n-Butyl-3-methylimidazolium Tetrafluoroborate. ACS Symp. Ser. 2003, 856, 110–120.
- (14) Kroon, M. C.; Shariati, A.; Costantini, M.; Witkamp, G. J.; Sheldon, R. A.; Peters, C. J. High-Pressure Phase Behavior of Systems with Ionic Liquids: Part V: The Binary System Carbon Dioxide + 1-Butyl-3-methylimidazolium Tetrafluoroborate. J. Chem. Eng. Data, accepted for publication.
- (15) Costantini, M.; Toussaint, V. A.; Shariati, A.; Peters, C. J.; Kikic, I. High-Pressure Phase Behavior of Systems with Ionic Liquids: Part IV. The Binary System Carbon Dioxide + 1-Hexyl-3methylimidazolium Tetrafluoroborate. J. Chem. Eng. Data, accepted for publication.
- (16) Husson-Borg, P.; Majer, V.; Costa Gomes, M. F. Solubilities of Oxygen and Carbon Dioxide in Butyl Methyl Imidazolium Tetrafluoroborate as a Function of Temperature and at Pressures Close to Atmospheric Pressure. J. Chem. Eng. Data 2003, 48, 480–485.
- (17) Ren, R. X.; Robertson, A. Preparation of Ionic Liquids. PCT Patent wo/03/051894, 2003.
- (18) Bradaric, C. J.; Downard, A.; Kennedy, C.; Robertson, A. J.; Zhou, Y. Industrial preparation of phosphonium ionic liquids. *Green Chem.* 2003, 5, 143–152.
- (19) Seddon, K. R.; Stark, A.; Torres, M. J. Influence of Chloride, Water, and Organic Solvents on the Physical Properties of Ionic Liquids. *Pure Appl. Chem.* **2000**, *72*, 2275–2287.
- (20) Cheng, K. W.; Tang, M.; Chen, Y. P. Vapor-liquid equilibria of carbon dioxide with diethyl oxalate, ethyl laurate, and dibutyl phthalate binary mixtures at elevated pressures. *Fluid Phase Equilib.* 2001, 181, 1–16.
- (21) Wilhelm, E.; Battino, R. Thermodynamic Functions of the Solubilities of Gases in Liquids at 25 ° C. Chem. Rev. **1973**, 73, 1–9.

Received for review July 29, 2004. Accepted November 1, 2004. The financial support of National Scientific Funding of China (nos. 20436050, 20276073, and 2004AA649030) and Key Lab. of Multiphase Reaction is gratefully acknowledged.

JE0497193